

# Feasibility of the Power-to-Protein concept in the circular economy of the city of Amsterdam



FRANK OESTERHOLT, LAURA SNIP, SILVIO MATASSA, WILLY VERSTRAETE

inspiring change



OUR RESEARCH

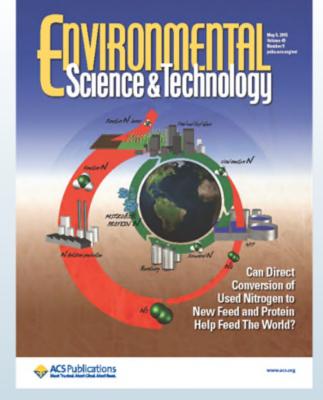
:::)

# SUSTAINABLE WATER CYCLE

- Sustainable use of water resources
- Preparing for climate change
- Water technologies for sustainable energy

KWR

Resource recovery

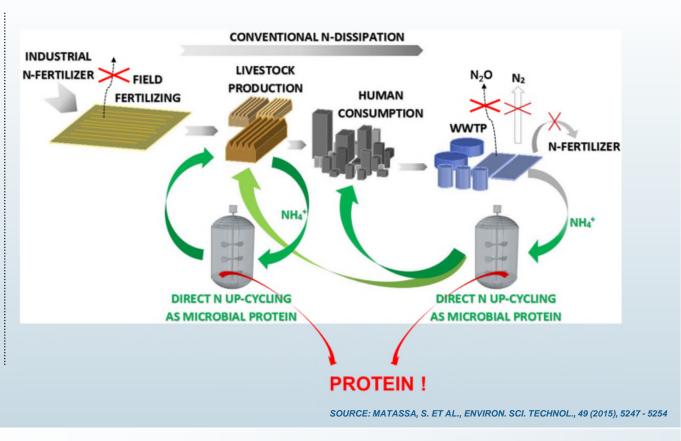

#### The idea of power-to-protein Avecom Belgium/ Prof. Dr. Willy Verstraete & Silvio Matassa M.Sc.

May 2015, cover ES&T

"Can direct conversion of used nitrogen to new feed and protein help feed the world?"

Is this how we feed 10 billion people on this planet in 2050?





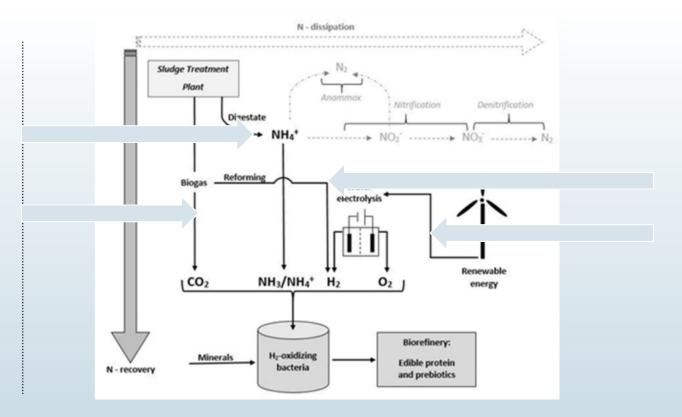

#### Power-to-protein concept Direct upcycling of ammonia as microbial protein

The artificial nitrogen cycle is very inefficient

Haber Bosch  $\rightarrow$  reactive N: 450 million tons/yr enter our biosphere

Only 10% becomes edible protein; 90% is lost to the environment




#### Power-to-protein concept All sources from the waste water chain

NH<sub>4</sub><sup>+</sup> from reject water sludge digester

CO<sub>2</sub> from biogas refinery to biomethane or other industrial sources

 $CO_2/H_2$  from steam methane reforming of biogas

H<sub>2</sub> from renewable energy on/off site (hydrogen economy)



#### Power-to-protein concept Laboratory set up and results



LAB FACILITY AVECOM

CSTR; 5 liter reactor

Batch mode Enriched mixed culture  $H_2$  gas conversion eff. 65 % 78 g CDW/m<sup>3</sup>reactor·h *Continuous mode* Monoculture: *Sulfuricurvum spp*.  $H_2$  gas conversion eff. 81 % 375 g CDW/m<sup>3</sup>reactor·h



DRIED PRODUCT



Crude protein content = 71 %

Nutritional properties:

comparable to high-quality fishmeal

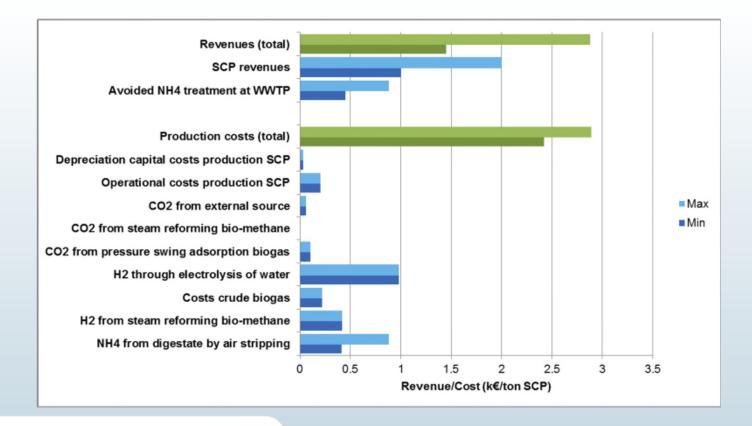


### PtP project Amsterdam The potential of the PtP-concept in the water cycle of Amsterdam

Desk study with following goals:

- Create a link with relevant sources in the urban zone of the city of Amsterdam
- Determine the technological and economic feasibility of the Power-to-Protein concept
- Define relevant research questions that have to be answered

| Amsterdam<br>Locations WWTP | Number of inhabitants connected | N-load<br>(tons/yr) | ammonia load<br>(tons/yr) |
|-----------------------------|---------------------------------|---------------------|---------------------------|
| WWTP West                   | 564,113                         | 3,009               | 3,876                     |
| WWTP Westpoort              | 265,510                         | 1,416               | 1,824                     |
| Total                       | 829,623                         | 4,425               | 5,700                     |




### PtP Project Amsterdam Potential and necessary resources

|                                                                                                                                                                                  |                         | Avecom   | Amsterdam-West                                                 | WWTP's Amsterdam |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|----------------------------------------------------------------|------------------|
|                                                                                                                                                                                  |                         | (2014)   | reject water                                                   | influent water   |
|                                                                                                                                                                                  |                         |          | sludge digestion                                               |                  |
|                                                                                                                                                                                  | available:              |          | by air stripping                                               | total potential  |
|                                                                                                                                                                                  | ammonium NH₄-N          | 196 kg   | 1.235 tons/yr                                                  | 4.670 tons/yr    |
|                                                                                                                                                                                  | hydrogen H <sub>2</sub> | 786 kg   | 5.000 tons/yr                                                  | 18.900 tons/yr   |
|                                                                                                                                                                                  | carbon dioxide          | 3309 kg  | 21.000 tons/yr                                                 | 79.400 tons/yr   |
|                                                                                                                                                                                  | oxygen                  | 2924 kg  | 18.400 tons/yr                                                 | 69.600 tons/yr   |
|                                                                                                                                                                                  | Production SCP          | 1,000 kg | 6,300 tons/yr                                                  | 24,000 tons/yr   |
| Based on reaction stoichiometry                                                                                                                                                  |                         |          |                                                                |                  |
| $21.36 \text{ H}_2 + 6.21\text{O}_2 + 4.09 \text{ CO}_2 + 0.76 \text{ NH}_3 \rightarrow \text{C}_{4.09}\text{H}_{7.13}\text{O}_{1.89}\text{N}_{0.76} + 18.7 \text{ H}_2\text{O}$ |                         |          | Equals 36 % of the net protein demand of the cities population |                  |



### PtP Project Amsterdam Costs and revenues (in k€/ton SCP)



#### Power-to-Protein concept Conclusions

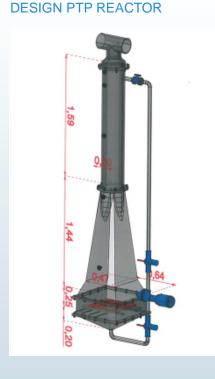
The potential for production of SCP from sources in the waste water chain is high There is a good economic potential as well from a broader perspective There is a need for efficient methods to extract ammonia from the waste water chain

Other relevant aspects:

- Introduction novel food: complex, time consuming and expensive/ focus on animal feed
- Protein characterisation: nutritional value, digestibility, allergenicity
- Public acceptance



#### Power-to-Protein concept Follow-up


#### Follow up research:

- Upscaling of the reactor
- Demonstration on site
- Characterisation of the SCP produced

#### Project partners:

Waternet, AEB, Waterboard Vechtstromen, Barentz Agri Nutrition, Avecom, KWR.

See www.powertoprotein.eu





## Acknowledgement

Project partners:

Waternet: Jan Peter van der Hoek & Andre Struker

AEB: Sietse Agema

Waterschap Vechtstromen: Mathijs Oosterhuis

Barentz Foods: Mathijs Keij

Avecom; Silvio Matassa & Willy Verstraete

KWR, Laura Snip, Hans Huiting, Luc Palmen, Jos Boere

This activity is co-financed with TKI-funding from the Topconsortia for Knowledge & Innovation (TKI's) of the Ministry of Economic Affairs.



More articles, pictures and videos on our KWR website

# kwrwater.nl



Visit us at stand no. 513