

Power-to-Protein: next step towards consumable single cell proteins from waste water and renewable hydrogen

F.I.H.M. Oesterholt¹, L. Palmen¹, W. Verstraete^{1,2,3}, J. Boere^{1,4}

- KWR Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands. 1.
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, 2. Belgium
- Avecom NV, Industrieweg 122P, 9032 Wondelgem, Belgium 3.
- Allied Water, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands 4.

Introduction Future global challenges

Population increase: •

9 billion people in 2050

• Increased protein requirement:

From 473 in 2014 to 943 MT protein in 2054

Environmental concerns: •

Sustainability was a "nice to have"; now it is a priority

Climate change: •

> Extreme weather including droughts will undermine future food production potential

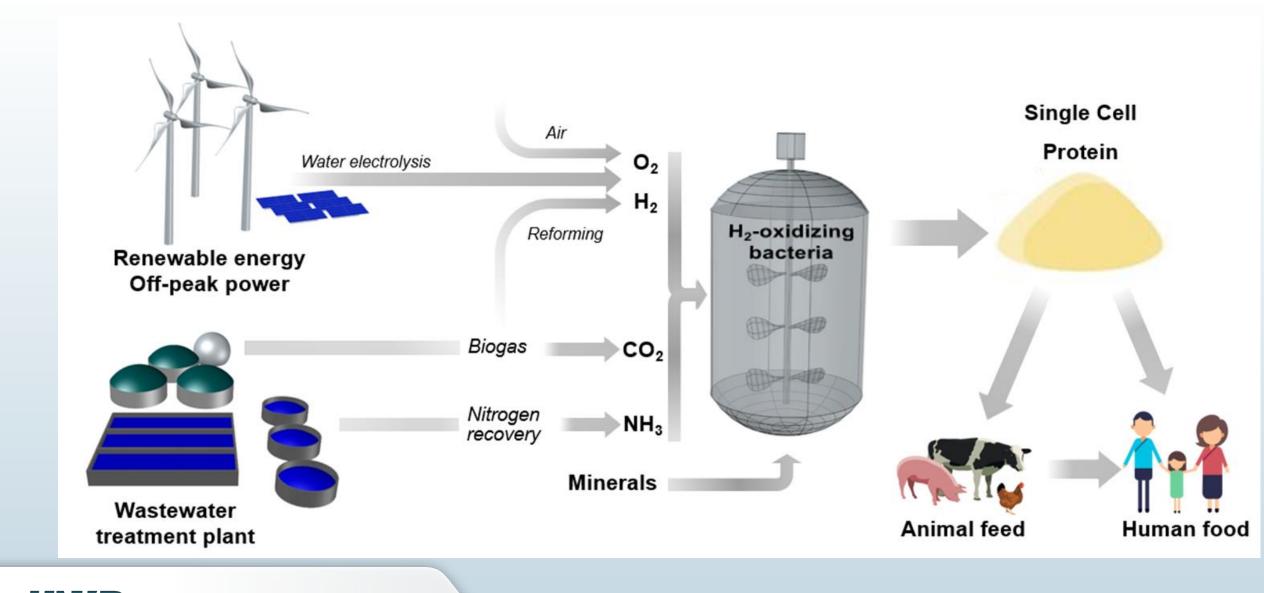
Power-to-protein concept

Biochemical conversion with carbon capture and ammonia recovery

power to **PROTEIN**

"Can direct conversion of used nitrogen to new feed and protein help feed the world?"

Ammonia from waste water


Hydrogen Oxidizing Bacteria (HOB):

Aerobic, facultative autotrophic bacteria By means of H_2 oxidation, CO_2 and NH_3 -N are incorporated into protein-rich biomass: SCP

 $5.2 \text{ H}_2 + 1.5 \text{ O}_2 + 1.0 \text{ CO}_2 + 0.2 \text{ NH}_3 \rightarrow$ $CH_{1,7}O_{0,5}N_{0,2} + 4.6 H_2O$

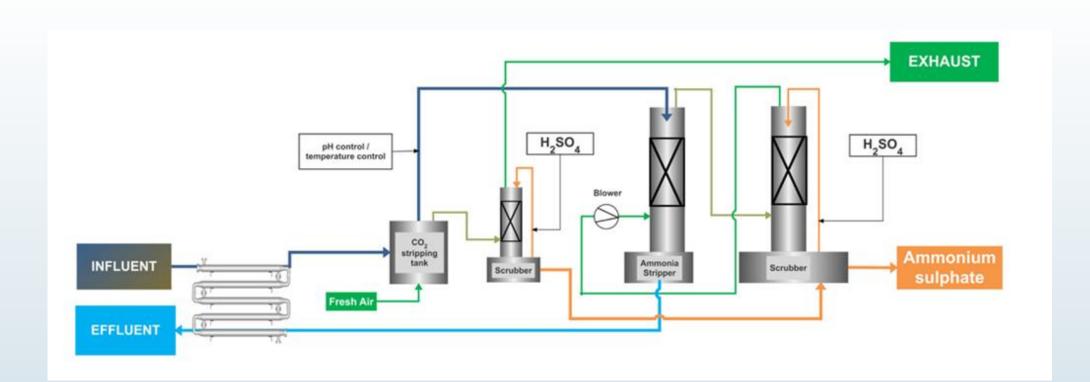
Power-to-protein concept All sources from the waste water chain

Power-to-protein project Under the TKI Water Technology Programme

co-financed with TKI-funding from the Topconsortia for Knowledge & Innovation (TKI's) of the Ministry of Economic Affairs

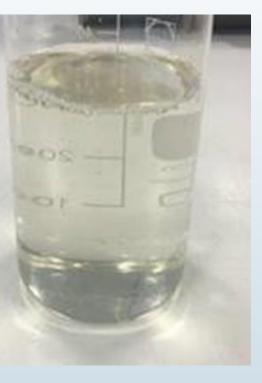
Power-to-protein pilot study Upscaling from 5 to 400 liter reactor volume

- Ammonia recovery by air stripping (NAR pilot plant; Nijhuis Water Technology)
- H_2 and O_2 produced on site with water electrolysis
- Reactor volume 400 L
- Expected productivity of 1 to 2 kg dry biomass per day
- 2 testing sites



POWER-TO-PROTEIN REACTOR AT SWTP HORSTERMEER (AMSTERDAM)

Power-to-protein pilot study


Ammonia recovery from reject water sludge digestion

SCHEME NIJHUIS AMMONIA RECOVER (NAR) PILOT

PRODUCED AMMONIA SULPHATE

Power-to-protein pilot study Business case ammonia recovery from reject water

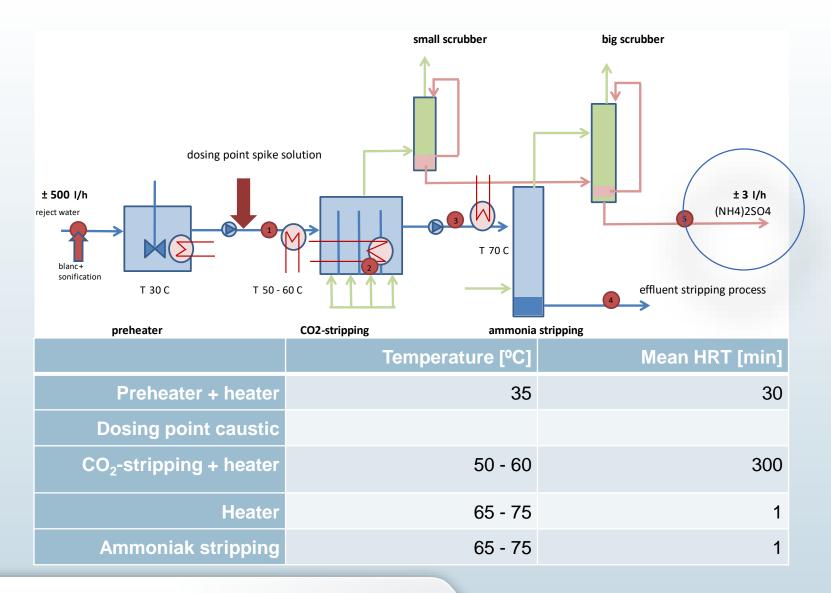
Parameter	Unit	Value
Average flow centrate	m³/d	690
Maximum hydraulic capacity	m³/d	850
Average NH4-N concentration	mg/l	1667
Required removal	%	90%
Effluent value NH4-N	mg/l	167
Temperature centrate	°C	25
Days per year running	days	365
Hours per day	hours	24

Cost can be further optimised by increasing the ammonia concentration in reject water.

E.g. at 2.500 mg/l costs will be reduced to €1,60 resp. €1,17 per kgN

Watercycle Research Institute	
	Watercycle Research Institute

KW


Parameter	Unit
Operational costs	
Electrical	€ or €/kgN
Heat	€ or €/kgN
H2SO4 (96%)	€ or €/kgN
NaOH (33%)	€ or €/kgN
Anti-foam	€ or €/kgN
Citric acid/HCI	€ or €/kgN
Maintenance	€ or €/kgN
Benefits Ammonium sulphate	€ or €/kgN
Total OPEX without residual heat	€ or €/kgN
Total OPEX with residual heat	€ or €/kgN
Investment costs	
Total investment	€ or €/kgN
Yearly costs CAPEX	€ or €/kgN
Total costs AECO-NAR per kg N recovered	
Total costs (no residual heat available)	€/KgN
Total costs (residual heat available)	€/KgN

Case WB Vechtstromen

Total costs		С	Costs per kgN	
€	19,100		€ 0.05	
€	243,000		€ 0.64	
€	137,500		€ 0.36	
€	205,500		€ 0.54	
€	-		€ -	
€	10,500		€ 0.03	
€	35,000		€ 0.09	
€	-47,000		€ -0.12	
€	603,600		€ 1.60	
€	360,600		€ 0.95	
€	1,750,000			
€	220,000		€ 0.58	
			€ 2.18	
			€ 1.54	

Power-to-protein pilot study

Challenge tests Ammonia recovery from reject water sludge digestion

Transfer of m.o. from reject water to ammonia sulphate

Challenge test by spiking:

- colifaag phiX174 (thermoresistent virus)
- Salmonella senftenberg
- spores of sulphite reducing clostridia (SSRC)

Inactivation/removal by:

- Combination of Heat + HRT
- Water to air transfer

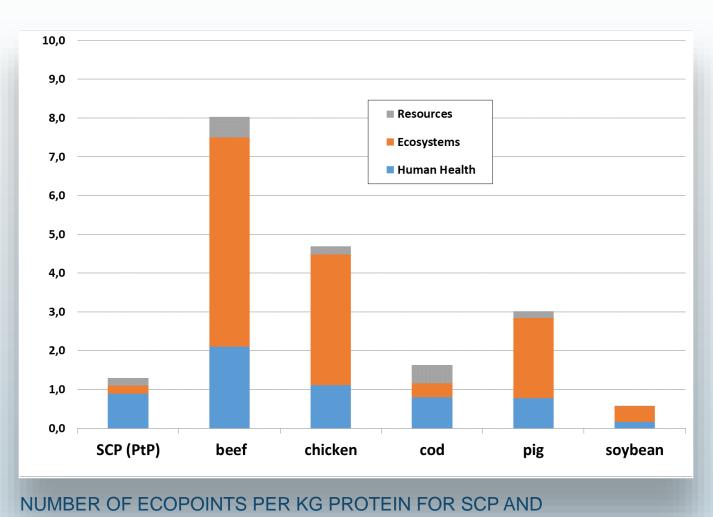
Power-to-protein pilot study Challenge tests Ammonia recovery from reject water

m.o. sensitive to T are inactivated to a large extent

m.o. not T sensitive are reduced substantially

Transfer of pathogens from the waste water chain is unlikely

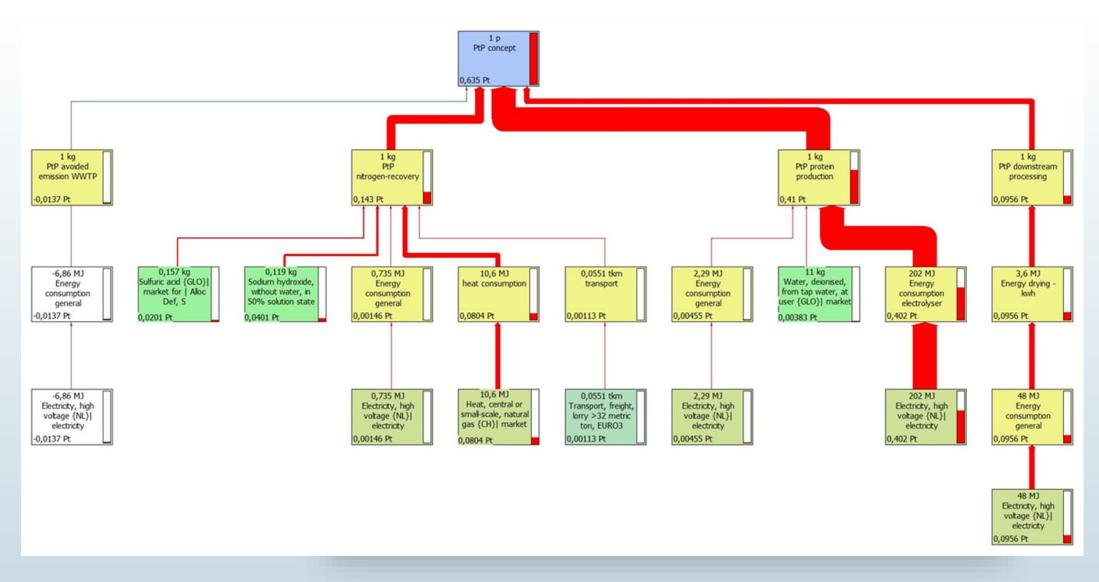
Thermoresistent bacterial spores will determine the shelf life of the product


Challengetest	Salmonella senf.
August 7 2018	
	MPN/I
Influent + spike	7,8*10 ⁷
Effluent CO ₂ -stripping	< 0,6
(NH ₄) ₂ SO ₄ from scrubber	< 0,6
Log-removal	
after CO ₂ -stripping	> 8,1
after NH ₄ -stripping and	> 2,1
scrubber	
overall	> 10,1

SSRC	colifaag phiX174
cfu/l	pfu/l
8,4*10 ⁶	7,7*10 ⁶
4,6*10 ⁵	3,3*10 ³
1,7*10 ³	< 100
1,3	3,4
4,4	> 3,5
5,7	> 6,9

Power-to-protein pilot study LCA study

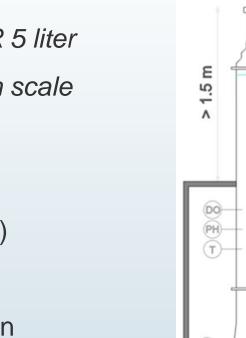
- SimaPro 8 EcoInvent 3.0 database •
- Electricity from "off shore wind" ٠
- Including ammonia recovery ۲
- Hydrogen uptake efficiency 80 % •
- *Reactor productivity 2 kg TSS/m³.day* •

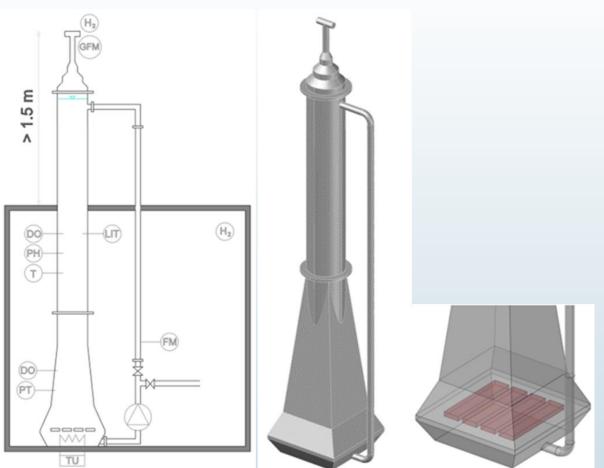

CONVENTIONAL PROTEINS

Power-to-protein pilot study LCA study

Tree structure LCA

Impact per unit operation




Power-to-Protein pilot study Hydrogen transfer in pilot was bottle-neck

Production goal was not reached	
Pilot	CSTR 5 lit
	bench sca
Max. production = 0,7 kg CDW/m ³ .day	(9,0)
Max. Yield = 0,05 kg CDW/kg COD-H ₂	(0,28)
Max. hydrogen conversion = 10 %	(81 %)

Research on fundamentals hydrogen mass transfer in biological reactors

Focus on pressurized bubble reactor or air-lift reactor

Acknowledgement

See <u>www.powertoprotein.eu</u> for more info

Project partners:

<u>Waternet</u>

<u>AEB</u>

Waterschap Vechtstromen

Barentz Foods

Avecom

<u>KWR</u>

This activity is co-financed with TKI-funding from the Topconsortia for Knowledge & Innovation (TKI's) of the Ministry of Economic Affairs.

More articles, pictures and videos on our KWR website

kwrwater.nl

© KWR Watercycle Research Institute